Monday, May 24, 2010

EyePhone - Mobil gaze interaction from University of Dartmouth

From the Emiliano Miluzzo and the group at Sensorlab, part of the Computer Science department at University of Dartmouth, comes the EyePhone which enables rudimentary gaze based interaction for tablet computers. Contemporary devices often utilizes touch based interaction, this creates a problem with occlusion where the hands covers large parts of the display. EyePhone could help to alleviate this issue. The prototype system demonstrated offers enough accuracy for an interfaces based on a 3x3 grid layout but with better hardware and algorithms there is little reason why this couldn't be better. However, a major issue with a mobile system is just the mobility of both the user and the hardware, in practice this means that not only the individual head moments has to be compensated for but also movements of the camera in essentially all degrees of freedom. Not an easy thing to solve but it's not a question of "if" but "when". Perhaps there is something that could be done using the angular position sensors many mobile devices already have embedded. This is an excellent first step and with a thrilling potential. Additional information is available in the M.I.T Technology Review article.



Abstract
As smartphones evolve researchers are studying new techniques to ease the human-mobile interaction. We propose EyePhone, a novel "hands free" interfacing system capable of driving mobile applications/functions using only the user's eyes movement and actions (e.g., wink). EyePhone tracks the user's eye movement across the phone's display using the camera mounted on the front of the phone; more speci cally, machine learning algorithms are used to: i) track the eye and infer its position on the mobile phone display as a user views a particular application; and ii) detect eye blinks that emulate mouse clicks to activate the target application under view. We present a prototype implementation of EyePhone on a Nokia 810, which is capable of tracking the position of the eye on the display, mapping this positions to a function that is activated by a wink. At no time does the user have to physically touch the phone display.


Figures. Camera images, eye region of interests and reported accuracies. Click to enlarge.

  • Emiliano Miluzzo, Tianyu Wang, Andrew T. Campbell, EyePhone: Activating Mobile Phones With Your Eyes. To appear in Proc. of The Second ACM SIGCOMM Workshop on Networking, Systems, and Applications on Mobile Handhelds (MobiHeld'10), New Delhi, India, August 30, 2010. [pdf] [video]

Thursday, May 20, 2010

Magnetic Eye Tracking Device from Arizona State University

A group of students at the Arizona State University have revisited the scleral search coil to develop a new low-cost Magnetic Eye Tracking Device (METD). The entrepreneurs aim at making this technology available to the public at an affordable $4000 and are primarily targeting disabled. More information is available at ASU News.



If your new to eye tracking it should be noted that the reporter claiming that common video based systems uses infrared lasers is just silly. It's essentially light-sources working in the IR spectrum (similar to the LED in your remote control).

Friday, April 30, 2010

GazePad: Low-cost remote webcam eye tracking

Came across the GazeLib low-cost remote eye tracking project today which uses ordinary webcams without IR illumination. The accuracy is pretty low but it's really nice to see another low-cost approach for assistive technology.

"GazeLib is a programming library which making real-time low-cost gaze tracking becomes possible. The library provide functions performing remote gaze tracking under ambient lighting condition using a single, low cost, off-the-shelf webcam. Developers can easily build gaze tracking technologies implemented applications in only few lines of code. GazeLib project focuses on promoting gaze tracking technology to consumer-grade human computer interfaces by reducing the price, emphasizing ease-of-use, increasing the extendibility, and enhancing the flexibility and mobility."



Monday, April 26, 2010

Freie Universität Berlin presents gaze controlled car

From the Freie Universität in Berlin comes a working prototype for a systems that allows direct steering by eye movements alone. The prototype was demonstrated in front of a large group journalist at the former Berlin Tempelhof Airport. Gaze data from a head-mounted SMI eye tracker is feed into the control system of the Spirit of Berlin, a platform for autonomous navigation. Similar to the gaze controlled robot we presented at CHI09 the platform offers a coupling between the turning of the wheels and the gaze data coordinate space (eg. look left and car drives left). Essentially its a mapping onto a 2D plane where deviations from the center issues steering commands and the degree of turning is modulated by the distance. Potentially interesting when coupled with other sensors that in combination offers offer driver support, for example if an object in the vehicles path that driver has not seen. Not to mention scenarios including individuals with disabilities and/or machine learning. The work has been carried out under guidance by professor Raúl Rojas as part AutoNOMOS project which has been running since 2006 after inspiration from the Stanford autonomos car project.

More info in the press-release.

Sunday, April 25, 2010

Wednesday, April 14, 2010

Open-source gaze tracker awarded Research Pearls of ITU Copenhagen

The open-source eye tracker ITU Gaze Tracker primarily developed by Javier San Augustin, Henrik Skovsgaard and myself has been awarded the Research Pearls of the IT University of Copenhagen. A presentation will be held at ITU on May 6th at 2pm. The software released one year ago have seen more than 5000 downloads by students and hobbyist around the world. It's rapidly approaching a new release which will offer better performance and stability for remote tracking and many bug fixes in general. The new version adds support for a whole range of new HD web cameras. These provides a vastly improved image quality that finally brings hope for a low-cost, open, flexible and reasonably performing solution. The ambitious goal strives to make eye tracking technology available for everyone, regardless of available resources. Follow the developments at the forum. Additional information is available at the ITU Gaze Group.

"The Open-Source ITU Gaze Tracker"

Abstract:
Gaze tracking offers them the possibility of interacting with a computer by just using eye movements, thereby making users more independent. However, some people (for example users with a severe disability) are excluded from access to gaze interaction due to the high prices of commercial systems (above 10.000€). Gaze tracking systems built from low-cost and off-the-shelf components have the potential of facilitating access to the technology and bring prices down.

The ITU Gaze Tracker is an off-the-shelf system that uses an inexpensive web cam or a video camera to track the user’s eye. It is free and open-source, offering users the possibility of trying out gaze interaction technology for a cost as low as 20€, and to adapt and extend the software to suit specific needs.

In this talk we will present the open-source ITU Gaze Tracker and show the different scenarios in which the system has been used and evaluated.

Monday, April 12, 2010

Digital avatars gets human-like eye movements

William Steptoe of University College London got his research on using eye tracking to give digital avatars human-like eye movements covered in an article by New Scientist. It turns out that "on average, the participants were able to identify 88 per cent of truths correctly when the avatars had eye movement, but only 70 per cent without. Spotting lies was harder, but eye movement helped: 48 per cent accuracy compared with 39 per cent without. Steptoe will present the results at the 2010 Conference on Human Factors in Computing Systems in Atlanta, Georgia, next week."

Eye tracking in the wild: Consumer decision-making process at the supermarket

Kerstin Gidlöf from the Lund University Humlab talks about the visual appearance of consumer products in the supermarket and how the graphical layout modulates our attention. Perhaps the free will is just an illusion, however number of items in my fridge containing faces equals zero. Is it me or the store I'm shopping at?

Monday, March 29, 2010

Text 2.0 gaze assisted reading

From the German Research Center for Artificial Intelligence comes a new demonstration of a gaze based reading system, Text 2.0, which utilizes eye tracking for making the reading experience more dynamic and interactive. For example the system can display images relevant to what your reading about or filter out less relevant information if your skimming through the content. The research is funded through the Stiftung Rheinland-Pfalz für Innovation. On the groups website you can also find an interesting project called PEEP which allows developers to connect eye trackers to Processing which enables aesthetically stunning visualizations. This platform is the core of the Text2.0 platform. Check out the videos.




More information:
Zdf.de: Wenn das auge die seite umblaettert?
Wired: Eye-Tracking Tablets and the Promise of Text 2.0
More demos at the groups website

Low-cost eye tracking and pong gaming from Imperial College London

A group of students at the Imperial College London have develop a low-cost head mounted tracker which they use to play Pong with. The work is carried out under supervision of Aldo Faisal in his lab.

"
We built an eyetracking system using mass-marketed off-the shelf components at 1/1000 of that cost, i.e. for less then 30 GBP. Once we made such a system that cheap we started thinking of it as a user interface for everyday use for impaired people.. The project was enable by realising that certain mass-marketed web cameras for video game consoles offer impressive performance approaching that of much more expensive research grade cameras.



"From this starting point research in our group has focussed on two parts so far:


1. The TED software, which is composed of two components which can run on two different computers (connected by wireless internet) or run on the same computer. The first component is the TED server (Linux-based) which interfaces directly with the cameras and processes the high-speed video feed and makes the data available (over the internet) to the client software. The client forms the second components, it is written in Java (i.e. it runs on any computer, Windows, Mac, Unix, ...) and provides the Mouse-control-via-eye-movements, the “Pong” video game as well as configuration and calibration functions.

This two part solution allows the cameras to be connected to a cost-effective netbook (e.g. on a wheel chair) and allow control of other computers over the internet (e.g. in the living room, office and kitchen). This software suite, as well as part of the low-level camera driver was implemented by Ian Beer, Aaron Berk, Oliver Rogers and Timothy Treglown, for their undergraduate project in the lab.

Note:the “Pong” video game has a two player mode, allowing two people to play against each other using two eye-trackers or eye-tracker vs keyboard. It is very easy to use, just look where you want the pong paddle to move...

2. The camera-spectacles (visible in most press photos), as well as a two-camera software (Windows-based) able to track eye-movements in 3D (i.e. direction and distance) for wheelchair control. These have been build and developed by William Abbott (Dept. of Bioengineering)."

Further reading:

Imperial College London press release: Playing “Pong” with the blink of an eye
The Engineer: Eye-movement game targets disabled
Engadget (German): Neurotechnologie: Pong mit Augenblinzeln gespielt in London