Thursday, August 20, 2009

A geometric approach to remote eye tracking (Villanueva et al, 2009)

Came across this paper today, it's good news and a great achievement, especially since consumer products for recording high definition over a plain USB port has begun to appear. For example the upcoming Microsoft Lifecam Cinema HD provides 1,280 x 720 at 30 frames per second. This is to be released on September 9th at a reasonable US$ 80. Hopefully it will allow a simple modification to remove the infrared blocking filter. Things are looking better and better for low-cost eye tracking, keep up the excellent work, it will make a huge difference for all of us.

"This paper presents a principled analysis of various combinations of image features to determine their suitability for remote eye tracking. It begins by reviewing the basic theory underlying the connection between eye image and gaze direction. Then a set of approaches is proposed based on different combinations of well-known features and their behaviour is valuated, taking into account various additional criteria such as free head movement, and minimum hardware and calibration requirements. The paper proposes a final method based on multiple glints and the pupil centre; the method is evaluated experimentally. Future trends in eye tracking technology are also discussed."

The algorithms were implemented in C++ running on a Windows PC equipped with a Pentium 4 processor at 3 GHz and 1 GB of Ram. The camera of choice delivers 15 frames per second at 1280 x 1024. Optimal distance from screen is 60 cm which is rather typical for remote eye trackers. This provides a track-box volume of 20 x 20 x 20 cm. Within this area the algorithms produce an average accuracy of 1.57 degrees. A 1 degree accuracy may be achieved obtained if the head is the same position as it was during calibration. Moving the head parallel to the monitor plane increases error by 0.2 - 0.4 deg. while moving closer or further away introduces a larger error between 1-1.5 degrees (mainly due to camera focus range). Note that no temporal filtering was used in the reporting. All-in-all these results are not so far from what typical remote systems produce.

The limitation of 15 fps stems from the frame rate of the camera, the software itself is able to process +50 images per second on the specified machine. Leaving it to our imagination what frame rates may be achieved with a fast Intel Core i7 processor with four cores.

  • A. Villanueva, G. Daunys, D. Hansen, M. Böhme, R. Cabeza, A. Meyer, and E. Barth, "A geometric approach to remote eye tracking," Universal Access in the Information Society. [Online]. Available:

No comments: