Showing posts with label inspiration. Show all posts
Showing posts with label inspiration. Show all posts

Tuesday, May 12, 2009

BBC News: The future of gadget interaction

Dan Simmons at BBC reports on future technologies from the Science Beyond Fiction 2009 conference in Prague. The news headline includes a section on the GazeCom project who won the 2nd prize for their exhibit "Gaze-contingent displays and interaction". Their website hosts additional demonstrations.

"Gaze tracking is well-established and has been used before now by online advertisers who use it to decide the best place to put an advert. A novel use of the system tracks someone's gaze and brings into focus the area of a video being watched by blurring their peripheral vision.In the future, the whole image could also be panned left or right as the gaze approaches the edge of the screen. Film producers are interested in using the system to direct viewers to particular parts within a movie. However, interacting with software through simply looking will require accurate but unobtrusive eye tracking systems that, so far, remain on the drawing board... The European Commission (EC) is planning to put more cash into such projects. In April it said it would increase its investment in this field from 100m to 170m euros (£89m-£152m) by 2013. " (BBC source ) More information about the EC CORDIS : ICT program.

External link. The BBC reported Dan Simmons tests a system designed to use a driver's peripheral vision to flag up potential dangers on the road. It was recorded at the Science Beyond Fiction conference in Prague.

The GazeCom project involves the following partners:

Thursday, May 7, 2009

Interactive Yarbus at MU, Netherlands

An interactive art exhibition by Christien Meindertsma in the Netherlands opens up for a real time generation of scanpaths to draw images similar to the ones presented in classic Yarbus paper. The main purpose is to illustrate individual differences in the way we look at objects (such as faces, umbrellas, cups etc.) These images are then printed directly and becomes a part of the exhibition. The exhibition runs until June 14th (location: Eindhoven).

Scanpath from the Yarbus (1967) for comparison.

Tuesday, May 5, 2009

Gaze-Augmented Manual Interaction (Bieg, H.J, 2009)

Hans-Joachim Bieg with the HCI Group at the University of Konstanz have investigated gaze augmented interaction on very large display areas. The prototype is running on the 221" Powerwall using a head mounted setup and allows users to select and zoom into an item of interest based on gaze position. An earlier video demonstration of setup can be found here.

"This project will demonstrate a new approach to employing users’ gaze in the context of human-computer interaction. This new approach uses gaze passively in order to improve the speed and precision of manually controlled pointing techniques. Designing such gaze augmented manual techniques requires an understanding of the principles that govern the coordination of hand and eye. This coordination is influenced by situational parameters (task complexity, input device used, etc.), which this project will explore in controlled experiments."

Gaze agumented interaction on the 221" PowerWall
  • Bieg, H. 2009. Gaze-augmented manual interaction. In Proceedings of the 27th international Conference Extended Abstracts on Human Factors in Computing Systems (Boston, MA, USA, April 04 - 09, 2009). CHI EA '09. ACM, New York, NY, 3121-3124. DOI= http://doi.acm.org/10.1145/1520340.1520442

Sunday, May 3, 2009

Laval VRchive @ Tokyo Metropolitan University

Hidenori Watanave at the Tokyo Metropolitan University have released a brief video demonstrating gaze interaction for the Laval VRchive. The VRchive is a virtual reality environment for navigating media content. The setup is using a standalone Tobii 1750 tracker and a projector. The simple interface allows gaze control through looking at either the top, bottom, left or right areas of the display area as well as winking to perform clicks. Althrough an early version the initial experiments were successful, but the software is unstable and needs further improvements.


Tuesday, November 18, 2008

A framework for gaze selection techniques (Tonder et al., 2008)

Martin van Tonder, Charmain Cilliers and Jean Greyling at the Nelson Mandela Metropolitan University, South Africa presented a platform independent framework in the proceedings of the 2008 annual research conference of the South African Institute of Computer Scientists. The framework is platform independent (relying on Java) and supports multiple interaction methods such as Kumars EyePoint, popups, as well as data logging and visualization.

Abstract
Experimental gaze interaction techniques are typically prototyped from scratch using proprietary libraries provided by the manufacturers of eye tracking equipment. These libraries provide gaze data interfaces, but not any of the additional infrastructure that is common to the implementation of such techniques. This results in an unnecessary duplication of effort. In this paper, a framework for implementing gaze selection techniques is presented. It consists of two components: a gaze library to interface with the tracker and a set of classes which can be extended to implement different gaze selection techniques. The framework is tracker and operating system independent, ensuring compatibility with a wide range of systems. Support for user testing is also built into the system, enabling researchers to automate the presentation of est targets to users and record relevant test data. These features greatly simplify the process of implementing and evaluating new interaction techniques. The practicality and flexibility of the framework are demonstrated by the successful implementation of a number of gaze selection
techniques.
  • van Tonder, M., Cilliers, C., and Greyling, J. 2008. A framework for gaze selection techniques. In Proceedings of the 2008 Annual Research Conference of the South African institute of Computer Scientists and information Technologists on IT Research in Developing Countries: Riding the Wave of Technology (Wilderness, South Africa, October 06 - 08, 2008). SAICSIT '08, vol. 338. ACM, New York, NY, 267-275. DOI= http://doi.acm.org/10.1145/1456659.1456690

Monday, November 3, 2008

The Conductor Interaction Method (Rachovides et al)

Interesting concept combining gaze input with hand gestures by Dorothy Rachovides at the Digital World Research Centre together with James Walkerdine and Peter Phillips at the Computing Department Lancaster University.

"This article proposes an alternative interaction method, the conductor interaction method (CIM), which aims to provide a more natural and easier-to-learn interaction technique. This novel interaction method extends existing HCI methods by drawing upon techniques found in human-human interaction. It is argued that the use of a two-phased multimodal interaction mechanism, using gaze for selection and gesture for manipulation, incorporated within a metaphor-based environment, can provide a viable alternative for interacting with a computer (especially for novice users). Both the model and an implementation of the CIM within a system are presented in this article. This system formed the basis of a number of user studies that have been performed to assess the effectiveness of the CIM, the findings of which are discussed in this work.


More specifically the CIM aims to provide the following.

—A More Natural Interface. The CIM will have an interface that utilizes gaze and gestures, but is nevertheless capable of supporting sophisticated activities. The CIM provides an interaction technique that is as natural as possible and is close to the human-human interaction methods with which users are already familiar. The combination of gaze and gestures allows the user to perform not only simple interactions with a computer, but also more complex interacones such as the selecting, editing, and placing of media objects.



—A Metaphor Supported Interface. In order to help the user understand and exploit the gaze and gesture interface, two metaphors have been developed. An orchestra metaphor is used to provide the environment in which the user interacts. A conductor metaphor is used for interacting within this environment. These two metaphors are discussed next.

—A Two-Phased Interaction Method. The CIM uses an interaction process where each modality is specific and has a particular function. The interaction between user and interface can be seen as a dialog that is comprised of two phases. In the first phase, the user selects the on-screen object by gazing at it. In the second phase, with the gesture interface the user is able to manipulate the selected object. These distinct functions of gaze and gesture aim to increase system usability, as they are based on human-human interaction techniques, and also help to overcome issues such as the Midas Touch problem that often experienced by look-and-dwell systems. As the dialog combines two modalities in sequence, the gaze interface can be disabled after the first phase. This minimizes the possibility of accidentally selecting objects through the gaze interface. The Midas Touch problem can also be further addressed by ensuring that there is ample dead space between media objects.

—Significantly Reduced Learning Overhead. The CIM aims to reduce the overhead of learning to use the system by encouraging the use of gestures that users can easily associate with activities they perform in their everyday life. This transfer of experience can lead to a smaller learning overhead [Borchers 1997], allowing users to make the most of the system’s features in a shorter time.

Gaze and Voice Based Game Interaction (Wilcox et al., 2008)

"We present a 3rd person adventure puzzle game using a novel combination of non intrusive eyetracking technology and voice recognition for game communication. Figure 1 shows the game, and its first person sub games that make use of eye tracker functionality in contrasting ways: a catapult challenge (a) and a staring competition(b)."


"There are two different modes of control in the main game. The user can select objects by looking at them and perform ’look’, ’pickup’, ’walk’, ’speak’, ’use’ and other commands by vocalizing there respective words. Alternatively, they can perform each command by blinking and winking at objects. To play the catapult game for example, the user must look at the target and blink, wink or drag to fire a projectile towards the object under the crosshair. "

Their work was presented at the ACM SIGGRAPH 2008 with the associated poster:

Sunday, October 26, 2008

Low cost open source eye tracking from Argentina

By using low cost webcams such as the Lifecam VX-100 or similar this person from Argentina have produced an eye tracker capable of running the Gaze Talk interface. The total cost for the eye tracker hardware is US$ 40-50. The software runs on a typical desktop or laptop computer using the OpenCV based image processing algorithms.


"My goal is to develop an open source system that enables people with severe motor disabilities to interact with the computer using their eye movements."

The project is running for another three weeks and the outcome will be very interesting. Check out the development blog at http://www.eyegazetracking.com/






Thursday, September 18, 2008

The Inspection of Very Large Images by Eye-gaze Control

Nicholas Adams, Mark Witkowski and Robert Spence from the Department of Electrical and Electronic Engineering at the Imperial College London got the HCI 08 Award for International Excellence for work related to gaze interaction.

"The researchers presented novel methods for navigating and inspecting extremely large images solely or primarily using eye gaze control. The need to inspect large images occurs in, for example, mapping, medicine, astronomy and surveillance, and this project considered the inspection of very large aerial images, held in Google Earth. Comparative search and navigation tasks suggest that, while gaze methods are effective for image navigation, they lag behind more conventional methods, so interaction designers might consider combining these techniques for greatest effect." (BCS Interaction)

Abstract

The increasing availability and accuracy of eye gaze detection equipment has encouraged its use for both investigation and control. In this paper we present novel methods for navigating and inspecting extremely large images solely or primarily using eye gaze control. We investigate the relative advantages and comparative properties of four related methods: Stare-to-Zoom (STZ), in which control of the image position and resolution level is determined solely by the user's gaze position on the screen; Head-to-Zoom (HTZ) and Dual-to-Zoom (DTZ), in which gaze control is augmented by head or mouse actions; and Mouse-to-Zoom (MTZ), using conventional mouse input as an experimental control.

The need to inspect large images occurs in many disciplines, such as mapping, medicine, astronomy and surveillance. Here we consider the inspection of very large aerial images, of which Google Earth is both an example and the one employed in our study. We perform comparative search and navigation tasks with each of the methods described, and record user opinions using the Swedish User-Viewer Presence Questionnaire. We conclude that, while gaze methods are effective for image navigation, they, as yet, lag behind more conventional methods and interaction designers may well consider combining these techniques for greatest effect.

This paper is the short version of Nicolas Adams Masters thesis which I stumbled upon before creating this blog. A early version appeared as a short paper for COGAIN06.

Monday, September 15, 2008

Apple develops gaze assisted interaction?

Apple recently registered a patent for merging several modalities including gaze vectors for novel interaction methods. The direction of gaze is to be used in combination with finger gestures (or other input devices) to modify the object that the user is currently looking at. Will be interesting to see what types of devices they are aiming for. May not be high precision eye tracking since stability and high accuracy is hard to obtain for a 100% population in all environments.

From the patent document:
"There are many possible applications that would benefit from the temporal fusion of gaze vectors with multi-touch movement data. For the purpose of example, one simple application will be discussed here: Consider a typical computer screen, which has several windows displayed. Assume that the user wishes to bring forward the window in the lower left corner, which is currently underneath two other windows. Without gaze vector fusion there are two means to do this, and both involve movement of the hand to another position. The first means is to move the mouse pointer over the window of interest and click the mouse button. The second means is to use a hot-key combination to cycle through the screen windows until the one of interest is brought forward. Voice input could also be used but it would be less efficient than the other means. With gaze vector fusion, the task is greatly simplified. For example, the user directs his gaze to the window of interest and then taps a specific chord on the multi-touch surface. The operation requires no translation of the hands and is very fast to perform."

"For another example, assume the user wishes to resize and reposition an iTunes window positioned in the upper left of a display screen. This can be accomplished using a multi-touch system by moving the mouse pointer into the iTunes window and executing a resize and reposition gesture. While this means is already an improvement over using just a mouse its efficiency can be further improved by the temporal fusion of gaze vector data. "

TeleGaze (Hemin, 2008)

"This research investigates the use of eye-gaze tracking in controlling the navigation of mobile robots remotely through a purpose built interface that is called TeleGaze. Controlling mobile robots from a remote location requires the user to continuously monitor the status of the robot through some sort of feedback system. Assuming that a vision-based feedback system is used such as video cameras mounted onboard the robot; this requires the eyes of the user to be engaged in the monitoring process throughout the whole duration of the operation. Meanwhile, the hands of the user need to be engaged, either partially or fully, in the driving task using any input devices. Therefore, the aim of this research is to build a vision based interface that enables the user to monitor as well as control the navigation of the robot using only his/her eyes as inputs to the system since the eyes are engaged in performing some tasks anyway. This will free the hands of the user for other tasks while controlling the navigation is done through the TeleGaze interface. "




TeleGaze experimental platform consists of a mobile robot, an eye gaze tracking equipment and a teleoperation station that the user interacts with. The TeleGaze interface runs on the teleoperation station PC and interprets inputs from the eyes into controlling commands. Meanwhile, presenting the user with the images that come back from the vision system mounted on the robotic platform.


More information at Hemin Sh. Omers website.

Associated publications:
  • Hemin Omer Latif, Nasser Sherkat and Ahmad Lotfi, "TeleGaze: Teleoperation through Eye Gaze", 7th IEEE International Conference on Cybernetic Intelligent Systems 2008, London, UK. Conference website: www.cybernetic.org.uk/cis2008
  • Hemin Omaer Latif, Nasser Sherkat and Ahmad Lotfi, "Remote Control of Mobile Robots through Human Eye Gaze: The Design and Evaluation of an Interface", SPIE Europe Security and Defence 2008, Cardiff, UK. Conference website: http://spie.org/security-defence-europe.xml

Thursday, August 28, 2008

Mixed reality systems for technical maintenance and gaze-controlled interaction (Gustafsson et al)

To follow up on the wearable display with an integrated eye tracker one possible application is in the domain of mixed reality. This allows for interfaces to be projected on top of a video stream (ie. the "world view") Thus blending the physical and virtual world. The paper below investigates how this could be used to assist technical maintenance of advanced systems such as fighter jets. It´s an early prototype but the field is very promising especially when an eye tracker is involved.


Abstract:
"The purpose of this project is to build up knowledge about how future Mixed Reality (MR) systems should be designed concerning technical solutions, aspects of Human-Machine-Interaction (HMI) and logistics. The report describes the work performed in phase2. Regarding hardware a hand-held MR-unit, a wearable MR-system and a gaze-controlled MR-unit have been developed. The work regarding software has continued with the same software architecture and MR-tool as in the former phase 1. A number of improvements, extensions and minor changes have been conducted as well as a general update. The work also includes experiments with two test case applications, "Turn-Round af Gripen (JAS) and "Starting Up Diathermy Apparatus" Comprehensive literature searches and surveys of knowledge of HMI aspects have been conducted, especially regarding gaze-controlled interaction. The report also includes a brief overview of ohter projects withing the area of Mixed Reality."
  • Gustafsson, T., Carleberg, P., Svensson, P., Nilsson, S., Le Duc, M., Sivertun, Å., Mixed Reality Systems for Technical Maintenance and Gaze-Controlled Interaction. Progress Report Phase 2 to FMV., 2005. Download paper as PDF

Tuesday, July 22, 2008

Eye gestures (Hemmert, 2007)

Fabian Hemmert at the Potsdam University of Applied Sciences published his MA thesis in 2007. He put up a site with extensive information and demonstrations of his research in eye gesture such as winks, squints, blinks etc. See the videos or thesis. Good work and great approach!

One example:






"Looking with one eye is a simple action. Seeing the screen with only one eye might therefore be used to switch the view to an alternate perspective on the screen contents: a filter for quick toggling. In this example, closing one eye filters out information on screen to a subset of the original data, such as an overview over the browser page or only the five most recently edited files. It was to see how the users would accept the functionality at the cost of having to close one eye, a not totally natural action." (Source)

Tuesday, July 15, 2008

Sebastian Hillaire at IRISA Rennes, France

Sebastian Hillaire is a Ph.D student at the IRISA Rennes in France, member of the BUNRAKU and France Telecom R&D. His work is situated around using eye trackers for improving the depth-of-field visual scene in 3D environments. He has published two papers on the topic:

Automatic, Real-Time, Depth-of-Field Blur Effect for First-Person Navigation in Virtual Environment (2008)

"We studied the use of visual blur effects for first-person navigation in virtual environments. First, we introduce new techniques to improve real-time Depth-of-Field blur rendering: a novel blur computation based on the GPU, an auto-focus zone to automatically compute the user’s focal distance without an eye-tracking system, and a temporal filtering that simulates the accommodation phenomenon. Secondly, using an eye-tracking system, we analyzed users’ focus point during first-person navigation in order to set the parameters of our algorithm. Lastly, we report on an experiment conducted to study the influence of our blur effects on performance and subjective preference of first-person shooter gamers. Our results suggest that our blur effects could improve fun or realism of rendering, making them suitable for video gamers, depending however on their level of expertise."

Screenshot from the algorithm implemented in Quake 3 Arena.

  • Sébastien Hillaire, Anatole Lécuyer, Rémi Cozot, Géry Casiez
    Automatic, Real-Time, Depth-of-Field Blur Effect for First-Person Navigation in Virtual Environment. To appear in IEEE Computer Graphics and Application (CG&A), 2008 , pp. ??-??
    Source code (please refer to my IEEE VR 2008 publication)

Using an Eye-Tracking System to Improve Depth-of-Field Blur Effects and Camera Motions in Virtual Environments (2008)

"
We describes the use of user’s focus point to improve some visual effects in virtual environments (VE). First, we describe how to retrieve user’s focus point in the 3D VE using an eye-tracking system. Then, we propose the adaptation of two rendering techniques which aim at improving users’ sensations during first-person navigation in VE using his/her focus point: (1) a camera motion which simulates eyes movement when walking, i.e., corresponding to vestibulo-ocular and vestibulocollic reflexes when the eyes compensate body and head movements in order to maintain gaze on a specific target, and (2) a Depth-of-Field (DoF) blur effect which simulates the fact that humans perceive sharp objects only within some range of distances around the focal distance.

Second, we describe the results of an experiment conducted to study users’ subjective preferences concerning these visual effects during first-person navigation in VE. It showed that participants globally preferred the use of these effects when they are dynamically adapted to the focus point in the VE. Taken together, our results suggest that the use of visual effects exploiting users’ focus point could be used in several VR applications involving firstperson navigation such as the visit of architectural site, training simulations, video games, etc."



Sébastien Hillaire, Anatole Lécuyer, Rémi Cozot, Géry Casiez
Using an Eye-Tracking System to Improve Depth-of-Field Blur Effects and Camera Motions in Virtual Environments. Proceedings of IEEE Virtual Reality (VR) Reno, Nevada, USA, 2008, pp. 47-51. Download paper as PDF.

QuakeIII DoF&Cam sources (depth-of-field, auto-focus zone and camera motion algorithms are under GPL with APP protection)

Thursday, July 10, 2008

Eye Gaze Interactive Air Traffic Controllers workstation (P.Esser & T.J.J Bos, 2007)

P.Esser and T.J.J Bos at the Maastricht University have developed a prototype for reducing the repetitive strain injuries Air Traffic Controllers sustain while operating their systems. The research was conducted at the National Aerospace Laboratory in the Netherlands. The results indicate a clear advantage compared to the traditional roller/track ball, especially for large distances. This is expected since Fitt's law does not apply in the same manner for eye movement as physical limb/hand movement. Sure eye movement over longer distances takes more time to perform than short ones but it does not compare to moving you arm one inch vs. one meter. Certainly there are more applications that could benifit from gaze assisted interaction, medical imaging in the field of radiology is one (such as CT, MRI, these produce very high resolution images with resolutions up to 4096x4096 pixels)


Summary of the thesis "Eye Gaze Interactive ACT workstation"
"Ongoing research is devoted to finding ways to improve performance and reduce workload of Air Traffic Controllers (ATCos) because their task is critical to the safe and efficient flow of air traffic. A new intuitive input method, known as eye gaze interaction, was expected to reduce the work- and task load imposed on the controllers by facilitating the interaction between the human and the ATC workstation. In turn, this may improve performance because the freed mental resources can be devoted to more critical aspects of the job, such as strategic planning. The objective of this Master thesis research was to explore how human computer interaction (HCI) in the ATC task can be improved using eye gaze input techniques and whether this will reduce workload for ATCos.


In conclusion, the results of eye gaze interaction are very promising for selection of aircraft on a radar screen. For entering instructions it was less advantageous. This is explained by the fact that in the first task the interaction is more intuitive while the latter is more a conscious selection task. For application in work environments with large displays or multiple displays eye gaze interaction is considered very promising. "



Download paper as pdf

Tuesday, June 3, 2008

Eye typing at the Bauhaus University of Weimar

The Psychophysiology and Perception group, part of the faculty of Media at the Bauhaus University of Weimar are conducting research on gaze based text entry. Their past research projects include the Qwerty on-screen dwell based keyboard, IWrite, pEYEWrite and StarWrite. Thanks to Mario Urbina for notification.

QWRTY
"Qwerty is based on dwell time selection. Here the user has to stare for 500 ms a determinate character to select it. QWERTY served us, as comparison base line for the new eye typing systems. It was implemented in C++ using QT libraries."







IWrite
"A simple way to perform a selection based on saccadic movement is to select an item by looking at it and confirm its selection by gazing towards a defined place or item. Iwrite is based on screen buttons. We implemented an outer frame as screen button. That is to say, characters are selected by gazing towards the outer frame of the application. This lets the text window in the middle of the screen for comfortable and safe text review. The order of the characters, parallel to the display borders, should reduce errors like the unintentional selection of items situated in the path as one moves across to the screen button.The strength of this interface lies on its simplicity of use. Additionally, it takes full advantage of the velocity of short saccade selection. Number and symbol entry mode was implemented for this editor in the lower frame. Iwrite was implemented in C++ using QT libraries."
PEYEWrite
"Pie menus have already been shown to be powerful menus for mouse or stylus control. They are two-dimensional, circular menus, containing menu items displayed as pie-formed slices. Finding a trade-off between user interfaces for novice and expert users is one of the main challenges in the design of an interface, especially in gaze control, as it is less conventional and utilized than input controlled by hand. One of the main advantages of pie menus is that interaction is very easy to learn. A pie menu presents items always in the same position, so users can match predetermined gestures with their corresponding actions. We therefore decided to transfer pie menus to gaze control and try it out for an eye typing approach. We designed the Pie menu for six items and two depth layers. With this configuration we can present (6 x 6) 36 items. The first layer contains groups of five letters ordered in pie slices.."

StarWrite
In StarWrite, selection is also based on saccadic movements to avoid dwell times. The idea of StarWrite is to combine eye typing movements with feedback. Users, mostly novices, tend to look to the text field after each selection to check what has been written. Here letters are typed by dragging them into the text field. This provides instantaneous visual feedback and should spare checking saccades towards text field. When a character is fixated, both it and its neighbors are highlighted and enlarged in order to facilitate the character selection. In order to use x- and y-coordinates for target selection, letters were arranged alphabetically on a half-circle in the upper part of the monitor. The text window appeared in the lower field. StarWrite provides a lower case as well, upper case, and numerical entry modes, that can be switched by fixating for 500 milliseconds the corresponding buttons, situated on the lower part of the application. There are also placed the space, delete and enter keys, which are driven by a 500 ms dwell time too. StarWrite was implemented in C++ using OpenGL libraries for the visualization."

Associated publications
  • Huckauf, A. and Urbina, M. H. 2008. Gazing with pEYEs: towards a universal input for various applications. In Proceedings of the 2008 Symposium on Eye Tracking Research & Applications (Savannah, Georgia, March 26 - 28, 2008). ETRA '08. ACM, New York, NY, 51-54. [URL] [PDF] [BIB]
  • Urbina, M. H. and Huckauf, A. 2007. Dwell time free eye typing approaches. In Proceedings of the 3rd Conference on Communication by Gaze Interaction - COGAIN 2007, September 2007, Leicester, UK, 65--70. Available online at http://www.cogain.org/cogain2007/COGAIN2007Proceedings.pdf [PDF] [BIB]
  • Huckauf, A. and Urbina, M. 2007. Gazing with pEYE: new concepts in eye typing. In Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization (Tubingen, Germany, July 25 - 27, 2007). APGV '07, vol. 253. ACM, New York, NY, 141-141. [URL] [PDF] [BIB]
  • Urbina, M. H. and Huckauf, A. 2007. pEYEdit: Gaze-based text entry via pie menus. In Conference Abstracts. 14th European Conference on Eye Movements ECEM2007. Kliegl, R. & Brenstein, R. (Eds.) (2007), 165-165.

Tuesday, May 20, 2008

SR Labs and I-MED Medical Console

From SR Labs in Italy comes the I-MED Medical Console. The interface contains some really nice interaction methods. The system is to be used in medical field by surgeons or medical staff alike whom can receive a benificial advantage of hands free interaction (viewing x-rays during surgery etc)






SR Labs have also developed the iABLE software suit which enables web browsing and sending emails. Unfortunally, there isn't much information is available in English. Seems to be the Italian alternative for MyTobii.




Tuesday, May 13, 2008

Inspiration: Gaze-Based Interaction for Semi-Automatic Photo Cropping

From the Visualization Lab, a part of the Computer Science Division at UC Berkley, comes an application that records gaze position while viewing images and then uses the data to perform cropping in a more intelligent way.

Abstract
"We present an interactive method for cropping photographs given minimal information about the location of important content, provided by eye tracking. Cropping is formulated in a general optimization framework that facilitates adding new composition rules, as well as adapting the system to particular applications. Our system uses fixation data to identify important content and compute the best crop for any given aspect ratio or size, enabling applications such as automatic snapshot recomposition, adaptive documents, and thumbnailing. We validate our approach with studies in which users compare our crops to ones produced by hand and by a completely automatic approach. Experiments show that viewers prefer our gaze-based crops to uncropped images and fully automatic crops."

Original well-composed images (left), adapted to two different aspect ratios using our gaze-based approach. An ADL document (right) using our crops. If eye movements are collected passively during document construction, our approach allows adaptation of images to arbitrary aspect ratios with no explicit user effort.

Associated paper:
Also check out

Monday, May 12, 2008

Gaze beats mouse: a case study.

Michael Dorr (publications) at the Institue of Neuro and Bioinformatics of University of Lübeck modified the open source version of LBreakout to be driven by gaze input using an SMI eye tracker. This was then used in a multiplayer setup where gaze/eye tracking took on the mouse. Source code and more information can be found here.

Click on images for video demonstration.


Related paper:

  • Michael Dorr, Martin Böhme, Thomas Martinetz, and Erhardt Barth. Gaze beats mouse: a case study. In The 3rd Conference on Communication by Gaze Interaction - COGAIN 2007, Leicester, UK, pages 16-19, 2007. [ bib .pdf ]

Sunday, May 11, 2008

Inspiration: Gaze controlled web browser

Craig Hennesy a Ph.D candidate at the Electrical and Computer Engineering dept. at University of British Columbia have done some work on gaze interaction. This includes the use of gaze position to scroll documents as the reader approaches the bottom of the window. This is used in other applications as well (really useful feature).

I´m currently working on my own implementation which will provide this functionality for a wide range of documents (web, pdf, word etc.) in combination with some new approaches on navigating the web using gaze alone.




"This video illustrates the use of eye-gaze tracking integrated with web browsing. The goal of this application is to reduce the use of the mouse when reading by removing the need to scroll up or down with the mouse. The simple scrolling application allows you to scroll down by looking below the article, scroll up by looking above the article, and go Back and Forward in the browser by looking to the left and right respectively.

In this demo the eye is tied to the mouse cursor so you can see where the user is looking, in the real application the motion of the eye stays behind the scenes and the mouse functions as a normal computer mouse."