Showing posts with label fitts law. Show all posts
Showing posts with label fitts law. Show all posts

Thursday, July 10, 2008

Eye Gaze Interactive Air Traffic Controllers workstation (P.Esser & T.J.J Bos, 2007)

P.Esser and T.J.J Bos at the Maastricht University have developed a prototype for reducing the repetitive strain injuries Air Traffic Controllers sustain while operating their systems. The research was conducted at the National Aerospace Laboratory in the Netherlands. The results indicate a clear advantage compared to the traditional roller/track ball, especially for large distances. This is expected since Fitt's law does not apply in the same manner for eye movement as physical limb/hand movement. Sure eye movement over longer distances takes more time to perform than short ones but it does not compare to moving you arm one inch vs. one meter. Certainly there are more applications that could benifit from gaze assisted interaction, medical imaging in the field of radiology is one (such as CT, MRI, these produce very high resolution images with resolutions up to 4096x4096 pixels)


Summary of the thesis "Eye Gaze Interactive ACT workstation"
"Ongoing research is devoted to finding ways to improve performance and reduce workload of Air Traffic Controllers (ATCos) because their task is critical to the safe and efficient flow of air traffic. A new intuitive input method, known as eye gaze interaction, was expected to reduce the work- and task load imposed on the controllers by facilitating the interaction between the human and the ATC workstation. In turn, this may improve performance because the freed mental resources can be devoted to more critical aspects of the job, such as strategic planning. The objective of this Master thesis research was to explore how human computer interaction (HCI) in the ATC task can be improved using eye gaze input techniques and whether this will reduce workload for ATCos.


In conclusion, the results of eye gaze interaction are very promising for selection of aircraft on a radar screen. For entering instructions it was less advantageous. This is explained by the fact that in the first task the interaction is more intuitive while the latter is more a conscious selection task. For application in work environments with large displays or multiple displays eye gaze interaction is considered very promising. "



Download paper as pdf

Monday, March 10, 2008

Application of Fitts Law to Eye Gaze Interaction Interfaces (Miniotas, 2000)

Fitts's law (often cited as Fitts' law) is a model of human movement which predicts the time required to rapidly move to a target area, as a function of the distance to the target and the size of the target. Paul M. Fitts (1912 – 1965) was a psychologist at Ohio State University (later at the University of Michigan). He developed a model of human movement, Fitts's law, based on rapid, aimed movement, which went on to become one of the most highly successful and well studied mathematical models of human motion. Fitts's law is used to model the act of pointing, both in the real world (e.g., with a hand or finger) and on computers (e.g., with a mouse) (Source: Wikipedia, 2008-03-11)


I became interested when I found the paper "Application of Fitts Law to Eye Gaze Interaction Interfaces" by Darius Miniotas (2000) at the Siauliai University, Lithuania. The study does only contain six participants. The task consists of keeping a fixation within 26mm x 26mm box continuously for 250ms. Knowing the noise and jitter in all eye trackers (the one I'm using is state-of-the-art 2008) the task might not be the best one for illustrating Fitts law while using eye trackers. Additionally, presenting a visual indicator of gaze position may appear as distracting due to often present offsets in eye tracking algorithms (somewhat off and moving around).

Abstract
An experiment is described comparing the performance of an eye tracker and a mouse in a simple pointing task. Subjects had to make rapid and accurate horizontal movements to targets that were vertical ribbons located at various distances from the cursor's starting position. The dwell-time protocol was used for the eye tracker to make selections. Movement times were shorter for the mouse than for the eye tracker. Fitts' Law model was shown to predict movement times using both interaction techniques equally well. The model is thus seen to be a potential contributor to design of modern multimodal human computer interfaces. (ACM Paper)