Showing posts with label prototype. Show all posts
Showing posts with label prototype. Show all posts

Wednesday, July 22, 2009

Gaze Interaction in Immersive Virtual Reality - 3D Eye Tracking in Virtual Worlds

Thies Pfeiffer (blog) working in the A.I group at the Faculty of technology, Bielefeld University in Germany have presented some interesting research on 3D gaze interaction in virtual environments. As the video demonstrates they have achieved high accuracy for gaze based pointing and selection. This opens up for a wide range of interesting man-machine interaction where digital avatars may mimic natural human behavior. Impressive.



Publications
  • Pfeiffer, T. (2008). Towards Gaze Interaction in Immersive Virtual Reality: Evaluation of a Monocular Eye Tracking Set-Up. In Virtuelle und Erweiterte Realität - Fünfter Workshop der GI-Fachgruppe VR/AR, 81-92. Aachen: Shaker Verlag GmbH. [Abstract] [BibTeX] [PDF]
  • Pfeiffer, T., Latoschik, M.E. & Wachsmuth, I. (2008). Evaluation of Binocular Eye Trackers and Algorithms for 3D Gaze Interaction in Virtual Reality Environments. Journal of Virtual Reality and Broadcasting, 5 (16), dec. [Abstract] [BibTeX] [URL] [PDF]
  • Pfeiffer, T., Donner, M., Latoschik, M.E. & Wachsmuth, I. (2007). 3D fixations in real and virtual scenarios. Journal of Eye Movement Research, Special issue: Abstracts of the ECEM 2007, 13.
  • Pfeiffer, T., Donner, M., Latoschik, M.E. & Wachsmuth, I. (2007). Blickfixationstiefe in stereoskopischen VR-Umgebungen: Eine vergleichende Studie. In Vierter Workshop Virtuelle und Erweiterte Realität der GI-Fachgruppe VR/AR, 113-124. Aachen: Shaker. [Abstract] [BibTeX] [PDF]
List of all publications available here.

Wednesday, July 15, 2009

Gaze & Voice recognition game development blog

Jonathan O'Donovan, a masters student in Interactive Entertainment Technology at the Trinity College in Dublin, have recently started a blog for his thesis. It will combine gaze and voice recognition for developing a new video game. So far the few posts available have mainly concerned the underlying framework but a proof-of-concept combining gaze and voice is demonstrated. The project will be developed on a Microsoft Windows based platform and utilizes the XNA game development framework for graphics and the Microsoft Speech SDK for voice input. The eye tracker of choice is a Tobii T60 provided by Acuity ETS (Reading, UK). The thesis will be supervised by Veronica Sundstedt at the Trinity College Computer Science dept.
Keep us posten Jonathan, excitied to see what you'll come up with!





Update: 
The project resulted in the Rabbit Run game which is documented in the following publication:

  • J. O’Donovan, J. Ward, S. Hodgins, V. Sundstedt (2009) Rabbit Run: Gaze and Voice Based Game Interaction (PDF). 

Tuesday, May 26, 2009

Toshiba eye tracking for automotive applications

Seen this one coming for a while. Wonder how stable it would be in a real-life scenario..
Via Donald Melanson at Engadget:
"We've seen plenty of systems that rely on facial recognition for an interface, but they've so far been a decidedly rarer occurrence when it comes to in-car systems. Toshiba looks set to change that, however, with it now showing off a new system that'll not only let you control the A/C or radio with the glance of your eye, but alert you if you happen to take your eyes off the road for too long. That's done with the aid of a camera mounted above the steering wheel that's used to identify and map out the driver's face, letting the car (or desktop PC in this demonstration) detect everything from head movement and eye direction to eyelid blinks, which Toshiba says could eventually be used to alert drowsy drivers. Unfortunately, Toshiba doesn't have any immediate plans to commercialize the technology, although it apparently busily working to make it more suited for embedded CPUs." (source)

Tuesday, May 19, 2009

Hands-free Interactive Image Segmentation Using Eyegaze (Sadeghi, M. et al, 2009)

Maryam Sadeghi, a Masters student at the Medical Image Analysis Lab at the Simon Fraser University in Canada presents an interesting paper on using eye tracking for gaze driven image segmentation. The research has been performed in cooperation with Geoffry Thien (Ph.D student), Dr. Hamarneh and Stella Atkins (principal investigators). More information is to be published on this page. Geoffry Thien completed his M.Sc thesis on gaze interaction in March under the title "Building Interactive Eyegaze Menus for Surgery" (abstract) unfortunately I have not been able to located a electronic copy of that document.

Abstract
"This paper explores a novel approach to interactive user-guided image segmentation, using eyegaze information as an input. The method includes three steps: 1) eyegaze tracking for providing user input, such as setting object and background seed pixel selection; 2) an optimization method for image labeling that is constrained or affected by user input; and 3) linking the two previous steps via a graphical user interface for displaying the images and other controls to the user and for providing real-time visual feedback of eyegaze and seed locations, thus enabling the interactive segmentation procedure. We developed a new graphical user interface supported by an eyegaze tracking monitor to capture the user's eyegaze movement and fixations (as opposed to traditional mouse moving and clicking). The user simply looks at different parts of the screen to select which image to segment, to perform foreground and background seed placement and to set optional segmentation parameters. There is an eyegaze-controlled "zoom" feature for difficult images containing objects with narrow parts, holes or weak boundaries. The image is then segmented using the random walker image segmentation method. We performed a pilot study with 7 subjects who segmented synthetic, natural and real medical images. Our results show that getting used the new interface takes about only 5 minutes. Compared with traditional mouse-based control, the new eyegaze approach provided a 18.6% speed improvement for more than 90% of images with high object-background contrast. However, for low contrast and more difficult images it took longer to place seeds using the eyegaze-based "zoom" to relax the required eyegaze accuracy of seed placement." Download paper as pdf.

The custom interface is used to place backgound (red) and object (green) seeds which are used in the segmentation process. The custom fixation detection algorithm triggers a mouse click to the gaze position, if 20 of the previous 30 gaze samples lies within a a 50 pixel radius.


The results indicate a certain degree of feasibility for gaze assisted segmentation, however real-life situations often contain more complex images where borders of objects are less defined. This is also indicated in the results where the CT brain scan represents the difficult category. For an initial study the results are interesting and it's likely that we'll see more of gaze interaction within domain specific applications in a near future.


  • Maryam Sadeghi, Geoff Tien, Ghassan Hamarneh, and Stella Atkins. Hands-free Interactive Image Segmentation Using Eyegaze. In SPIE Medical Imaging 2009: Computer-Aided Diagnosis. Proceedings of the SPIE, Volume 7260 (pdf)

Tuesday, May 12, 2009

BBC News: The future of gadget interaction

Dan Simmons at BBC reports on future technologies from the Science Beyond Fiction 2009 conference in Prague. The news headline includes a section on the GazeCom project who won the 2nd prize for their exhibit "Gaze-contingent displays and interaction". Their website hosts additional demonstrations.

"Gaze tracking is well-established and has been used before now by online advertisers who use it to decide the best place to put an advert. A novel use of the system tracks someone's gaze and brings into focus the area of a video being watched by blurring their peripheral vision.In the future, the whole image could also be panned left or right as the gaze approaches the edge of the screen. Film producers are interested in using the system to direct viewers to particular parts within a movie. However, interacting with software through simply looking will require accurate but unobtrusive eye tracking systems that, so far, remain on the drawing board... The European Commission (EC) is planning to put more cash into such projects. In April it said it would increase its investment in this field from 100m to 170m euros (£89m-£152m) by 2013. " (BBC source ) More information about the EC CORDIS : ICT program.

External link. The BBC reported Dan Simmons tests a system designed to use a driver's peripheral vision to flag up potential dangers on the road. It was recorded at the Science Beyond Fiction conference in Prague.

The GazeCom project involves the following partners:

Tuesday, May 5, 2009

Gaze-Augmented Manual Interaction (Bieg, H.J, 2009)

Hans-Joachim Bieg with the HCI Group at the University of Konstanz have investigated gaze augmented interaction on very large display areas. The prototype is running on the 221" Powerwall using a head mounted setup and allows users to select and zoom into an item of interest based on gaze position. An earlier video demonstration of setup can be found here.

"This project will demonstrate a new approach to employing users’ gaze in the context of human-computer interaction. This new approach uses gaze passively in order to improve the speed and precision of manually controlled pointing techniques. Designing such gaze augmented manual techniques requires an understanding of the principles that govern the coordination of hand and eye. This coordination is influenced by situational parameters (task complexity, input device used, etc.), which this project will explore in controlled experiments."

Gaze agumented interaction on the 221" PowerWall
  • Bieg, H. 2009. Gaze-augmented manual interaction. In Proceedings of the 27th international Conference Extended Abstracts on Human Factors in Computing Systems (Boston, MA, USA, April 04 - 09, 2009). CHI EA '09. ACM, New York, NY, 3121-3124. DOI= http://doi.acm.org/10.1145/1520340.1520442

Sunday, May 3, 2009

Laval VRchive @ Tokyo Metropolitan University

Hidenori Watanave at the Tokyo Metropolitan University have released a brief video demonstrating gaze interaction for the Laval VRchive. The VRchive is a virtual reality environment for navigating media content. The setup is using a standalone Tobii 1750 tracker and a projector. The simple interface allows gaze control through looking at either the top, bottom, left or right areas of the display area as well as winking to perform clicks. Althrough an early version the initial experiments were successful, but the software is unstable and needs further improvements.


Thursday, March 12, 2009

The Argentinian myEye released

I have been following an interesting project taking place in Argentina during the last half year. Marcelo Laginestra have through his blog described the developments of a low-cost webcam based eye tracker. It has now been released for download, free of charge.

The system requirements are modest,
  • CPU: 1.5 Ghz or higher
  • RAM: 256 DDR RAM or higher (Recommendation 512 RAM)
  • Space: at least 100MB hard disk space.
  • Camera: 640x480 capture resolution or higher. (At least 30fps)
  • O.S.: Microsoft Windows XP SP2
Go to the myEye website to download the software.

I am happy to see that the project came through, kudos for releasing under Creative Commons.

Keep an eye open for the ITU gaze interaction platform that will be released in conjunction with CHI09 in early April.

Wednesday, January 21, 2009

Wearable EOG Goggles: Eye-Based Interaction in Everyday Environments

Andreas Bulling in the Wearable Computing Group at the Swiss Federal Insitute of Technology (ETH) is working on a new Electrooculography-based eye tracking system. This technology relies on the small but measurable electrical currents (potentials) created by the eye musculature. A set of electrodes are attached to the skin and after signal processing this data can be used for controlling computer interfaces or other devices. The obvious advantage of this method of eye tracking compared to the more traditional corneal reflection video-based methods is that its not sensitive to sunlight and may therefor be used outdoors. However, to my knowledge, it provide a lower accuracy, this results in most EOG interfaces relying on eye gestures rather than gaze fixations.

"We want to introduce the paradigm of visual perception and investigations on eye movements as new methods to implement novel and complement current context-aware systems. Therefore, we will investigate the potential but also possible limitations of using eye movements to perform context and activity recognition in wearable settings. Besides recognizing individual activities another focus will be put on long-term eye movement analysis." More information.

Recently Andreas got a paper accepted for the CHI 2009 conference in Boston (April 4-9th) where the system will be demonstrated during the interactivity session. Andreas and the team at ETH are planning to investigate attentive user interfaces (AUI) in mobile settings using wearable systems, such as the prototype demonstrated in the video below.

View on YouTube

Monday, November 24, 2008

Our gaze controlled robot on the DR News

The Danish National Television "TV-Avisen" episode on our gaze controlled robot was broadcasted Friday 22nd November for the nine o´ clock news. Alternative versions (resolution) of the video clip can be found at the DR site.








View video

Friday, November 21, 2008

Eye movement control of remote robot

Yesterday we demonstrated our gaze navigated robot at the Microsoft Robotics event here at ITU Copenhagen. The "robot" transmits a video which is displayed on a client computer. By using an eye tracker we can direct the robot towards where the user is looking. The concept allows for a human-machine interaction with a direct mapping of the users intention. The Danish National TV (DR) came by today and recorded a demonstration. It will be shown tonight at the nine o´ clock news. Below is a video that John Paulin Hansen recorded yesterday which demonstrates the system. Please notice that the frame-rate of the video stream was well below average at the time of recording. It worked better today. In the coming week we'll look into alternative solutions (suggestions appreciated) The projects has been carried out in collaboration with Alexandre Alapetite from DTU. His low-cost, LEGO-based rapid mobile robot prototype, gives interesting possibilities to test some human-computer and human-robot interaction.



The virgin tour around the ITU office corridor (on YouTube)



Available on YouTube

Monday, November 17, 2008

Wearable Augmented Reality System using Gaze Interaction (Park et al., 2008)

Hyung Min Park, Seok Han Lee and Jong Soo Choi from the Graduate School of Advanced Imaging Science, Multimedia & Film at the University of Chung-Ang, Korea presented a paper on their Wearable Augmented Reality System (WARS) at the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. They use a half-blink mode (called "aging") for selection which is detected by their custom eye tracking algorithms. See the end of the video.

Abstract
Undisturbed interaction is essential to provide immersive AR environments. There have been a lot of approaches to interact with VEs (virtual environments) so far, especially in hand metaphor. When the user‟s hands are being used for hand-based work such as maintenance and repair, necessity of alternative interaction technique has arisen. In recent research, hands-free gaze information is adopted to AR to perform original actions in concurrence with interaction. [3, 4]. There has been little progress on that research, still at a pilot study in a laboratory setting. In this paper, we introduce such a simple WARS(wearable augmented reality system) equipped with an HMD, scene camera, eye tracker. We propose „Aging‟ technique improving traditional dwell-time selection, demonstrate AR gallery – dynamic exhibition space with wearable system.
Download paper as PDF.

Sunday, October 26, 2008

Low cost open source eye tracking from Argentina

By using low cost webcams such as the Lifecam VX-100 or similar this person from Argentina have produced an eye tracker capable of running the Gaze Talk interface. The total cost for the eye tracker hardware is US$ 40-50. The software runs on a typical desktop or laptop computer using the OpenCV based image processing algorithms.


"My goal is to develop an open source system that enables people with severe motor disabilities to interact with the computer using their eye movements."

The project is running for another three weeks and the outcome will be very interesting. Check out the development blog at http://www.eyegazetracking.com/






Thursday, September 18, 2008

The Inspection of Very Large Images by Eye-gaze Control

Nicholas Adams, Mark Witkowski and Robert Spence from the Department of Electrical and Electronic Engineering at the Imperial College London got the HCI 08 Award for International Excellence for work related to gaze interaction.

"The researchers presented novel methods for navigating and inspecting extremely large images solely or primarily using eye gaze control. The need to inspect large images occurs in, for example, mapping, medicine, astronomy and surveillance, and this project considered the inspection of very large aerial images, held in Google Earth. Comparative search and navigation tasks suggest that, while gaze methods are effective for image navigation, they lag behind more conventional methods, so interaction designers might consider combining these techniques for greatest effect." (BCS Interaction)

Abstract

The increasing availability and accuracy of eye gaze detection equipment has encouraged its use for both investigation and control. In this paper we present novel methods for navigating and inspecting extremely large images solely or primarily using eye gaze control. We investigate the relative advantages and comparative properties of four related methods: Stare-to-Zoom (STZ), in which control of the image position and resolution level is determined solely by the user's gaze position on the screen; Head-to-Zoom (HTZ) and Dual-to-Zoom (DTZ), in which gaze control is augmented by head or mouse actions; and Mouse-to-Zoom (MTZ), using conventional mouse input as an experimental control.

The need to inspect large images occurs in many disciplines, such as mapping, medicine, astronomy and surveillance. Here we consider the inspection of very large aerial images, of which Google Earth is both an example and the one employed in our study. We perform comparative search and navigation tasks with each of the methods described, and record user opinions using the Swedish User-Viewer Presence Questionnaire. We conclude that, while gaze methods are effective for image navigation, they, as yet, lag behind more conventional methods and interaction designers may well consider combining these techniques for greatest effect.

This paper is the short version of Nicolas Adams Masters thesis which I stumbled upon before creating this blog. A early version appeared as a short paper for COGAIN06.

Monday, September 15, 2008

Apple develops gaze assisted interaction?

Apple recently registered a patent for merging several modalities including gaze vectors for novel interaction methods. The direction of gaze is to be used in combination with finger gestures (or other input devices) to modify the object that the user is currently looking at. Will be interesting to see what types of devices they are aiming for. May not be high precision eye tracking since stability and high accuracy is hard to obtain for a 100% population in all environments.

From the patent document:
"There are many possible applications that would benefit from the temporal fusion of gaze vectors with multi-touch movement data. For the purpose of example, one simple application will be discussed here: Consider a typical computer screen, which has several windows displayed. Assume that the user wishes to bring forward the window in the lower left corner, which is currently underneath two other windows. Without gaze vector fusion there are two means to do this, and both involve movement of the hand to another position. The first means is to move the mouse pointer over the window of interest and click the mouse button. The second means is to use a hot-key combination to cycle through the screen windows until the one of interest is brought forward. Voice input could also be used but it would be less efficient than the other means. With gaze vector fusion, the task is greatly simplified. For example, the user directs his gaze to the window of interest and then taps a specific chord on the multi-touch surface. The operation requires no translation of the hands and is very fast to perform."

"For another example, assume the user wishes to resize and reposition an iTunes window positioned in the upper left of a display screen. This can be accomplished using a multi-touch system by moving the mouse pointer into the iTunes window and executing a resize and reposition gesture. While this means is already an improvement over using just a mouse its efficiency can be further improved by the temporal fusion of gaze vector data. "

TeleGaze (Hemin, 2008)

"This research investigates the use of eye-gaze tracking in controlling the navigation of mobile robots remotely through a purpose built interface that is called TeleGaze. Controlling mobile robots from a remote location requires the user to continuously monitor the status of the robot through some sort of feedback system. Assuming that a vision-based feedback system is used such as video cameras mounted onboard the robot; this requires the eyes of the user to be engaged in the monitoring process throughout the whole duration of the operation. Meanwhile, the hands of the user need to be engaged, either partially or fully, in the driving task using any input devices. Therefore, the aim of this research is to build a vision based interface that enables the user to monitor as well as control the navigation of the robot using only his/her eyes as inputs to the system since the eyes are engaged in performing some tasks anyway. This will free the hands of the user for other tasks while controlling the navigation is done through the TeleGaze interface. "




TeleGaze experimental platform consists of a mobile robot, an eye gaze tracking equipment and a teleoperation station that the user interacts with. The TeleGaze interface runs on the teleoperation station PC and interprets inputs from the eyes into controlling commands. Meanwhile, presenting the user with the images that come back from the vision system mounted on the robotic platform.


More information at Hemin Sh. Omers website.

Associated publications:
  • Hemin Omer Latif, Nasser Sherkat and Ahmad Lotfi, "TeleGaze: Teleoperation through Eye Gaze", 7th IEEE International Conference on Cybernetic Intelligent Systems 2008, London, UK. Conference website: www.cybernetic.org.uk/cis2008
  • Hemin Omaer Latif, Nasser Sherkat and Ahmad Lotfi, "Remote Control of Mobile Robots through Human Eye Gaze: The Design and Evaluation of an Interface", SPIE Europe Security and Defence 2008, Cardiff, UK. Conference website: http://spie.org/security-defence-europe.xml

Thursday, August 28, 2008

Mixed reality systems for technical maintenance and gaze-controlled interaction (Gustafsson et al)

To follow up on the wearable display with an integrated eye tracker one possible application is in the domain of mixed reality. This allows for interfaces to be projected on top of a video stream (ie. the "world view") Thus blending the physical and virtual world. The paper below investigates how this could be used to assist technical maintenance of advanced systems such as fighter jets. It´s an early prototype but the field is very promising especially when an eye tracker is involved.


Abstract:
"The purpose of this project is to build up knowledge about how future Mixed Reality (MR) systems should be designed concerning technical solutions, aspects of Human-Machine-Interaction (HMI) and logistics. The report describes the work performed in phase2. Regarding hardware a hand-held MR-unit, a wearable MR-system and a gaze-controlled MR-unit have been developed. The work regarding software has continued with the same software architecture and MR-tool as in the former phase 1. A number of improvements, extensions and minor changes have been conducted as well as a general update. The work also includes experiments with two test case applications, "Turn-Round af Gripen (JAS) and "Starting Up Diathermy Apparatus" Comprehensive literature searches and surveys of knowledge of HMI aspects have been conducted, especially regarding gaze-controlled interaction. The report also includes a brief overview of ohter projects withing the area of Mixed Reality."
  • Gustafsson, T., Carleberg, P., Svensson, P., Nilsson, S., Le Duc, M., Sivertun, Å., Mixed Reality Systems for Technical Maintenance and Gaze-Controlled Interaction. Progress Report Phase 2 to FMV., 2005. Download paper as PDF

Sunday, August 24, 2008

Nokia Research: Near Eye Display with integrated eye tracker

During my week in Tampere I had the opportunity to visit Nokia Research to get a hands on with a prototype that integrates a head mounted display with an eye tracker. Due to a NDA I am unable to reveal the contents of the discussion but it does work and it was a very neat experience with great potential. Would love to see a commercial application down the road. For more information there is a paper available:
Hands-On with the Nokia NED w/ integrated eye tracker

Paper abstract:
"Near-to-Eye Display (NED) offers a big screen experience to the user anywhere, anytime. It provides a way to perceive a larger image than the physical device itself is. Commercially available NEDs tend to be quite bulky and uncomfortable to wear. However, by using very thin plastic light guides with diffractive structures on the surfaces, many of the known deficiencies can be notably reduced. These Exit Pupil Expander (EPE) light guides enable a thin, light, user friendly and high performing see-through NED, which we have demonstrated. To be able to interact with the displayed UI efficiently, we have also integrated a video-based gaze tracker into the NED. The narrow light beam of an infrared light source is divided and expanded inside the same EPEs to produce wide collimated beams out from the EPE towards the eyes. Miniature video camera images the cornea and eye gaze direction is accurately calculated by locating the pupil and the glints of the infrared beams. After a simple and robust per-user calibration, the data from the highly integrated gaze tracker reflects the user focus point in the displayed image which can be used as an input device for the NED system. Realizable applications go from eye typing to playing games, and far beyond."

Thursday, July 10, 2008

Eye Gaze Interactive Air Traffic Controllers workstation (P.Esser & T.J.J Bos, 2007)

P.Esser and T.J.J Bos at the Maastricht University have developed a prototype for reducing the repetitive strain injuries Air Traffic Controllers sustain while operating their systems. The research was conducted at the National Aerospace Laboratory in the Netherlands. The results indicate a clear advantage compared to the traditional roller/track ball, especially for large distances. This is expected since Fitt's law does not apply in the same manner for eye movement as physical limb/hand movement. Sure eye movement over longer distances takes more time to perform than short ones but it does not compare to moving you arm one inch vs. one meter. Certainly there are more applications that could benifit from gaze assisted interaction, medical imaging in the field of radiology is one (such as CT, MRI, these produce very high resolution images with resolutions up to 4096x4096 pixels)


Summary of the thesis "Eye Gaze Interactive ACT workstation"
"Ongoing research is devoted to finding ways to improve performance and reduce workload of Air Traffic Controllers (ATCos) because their task is critical to the safe and efficient flow of air traffic. A new intuitive input method, known as eye gaze interaction, was expected to reduce the work- and task load imposed on the controllers by facilitating the interaction between the human and the ATC workstation. In turn, this may improve performance because the freed mental resources can be devoted to more critical aspects of the job, such as strategic planning. The objective of this Master thesis research was to explore how human computer interaction (HCI) in the ATC task can be improved using eye gaze input techniques and whether this will reduce workload for ATCos.


In conclusion, the results of eye gaze interaction are very promising for selection of aircraft on a radar screen. For entering instructions it was less advantageous. This is explained by the fact that in the first task the interaction is more intuitive while the latter is more a conscious selection task. For application in work environments with large displays or multiple displays eye gaze interaction is considered very promising. "



Download paper as pdf

Thursday, July 3, 2008

Low cost eye tracking

Marcelo from Argentina have developed a low cost solution using the Logitech Quickcam Express webcamera. The video it produces has a resolution of 352 x 288 pixels. It is mounted close to the eye and with extra illumination from two lamps. Marcelos crude eye tracker relies on an elliptic fitting of the pupil in the visible light spectrum which differes from most commercial alternatives (which uses infrared light to create reflections on the eye ball, this is typically the second step to increase the accuracy)

Considering the low resolution of the camera and the simplicity of the setup the results are noteworthy. Hope to see more development of this!